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Abbreviations
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Abstract
In the field of oil and gas equipment management, frequent maintenance is conducted, resulting in unnecessary costs. 
Relying solely on a single artificial intelligence model often leads to low predictive accuracy and inadequate robustness 
because of the poor data quality. Therefore, a method based on ensemble learning modeling is proposed to accurately 
assess the health status of industrial equipment and predict its remaining useful life. By conducting big data analysis on 
the operational history data of all oil and gas equipment, various fault instances are extracted and grouped accordingly. 
The integration of meta-learning convolutional shrinkage neural networks (ML-CSNN), domain expert rules, and support 
vector machine (SVM) models forms a hybrid model aimed at constructing a robust classification model. The effectiveness 
of the proposed method is validated using operational data from shengli oilfield production wells in China. The proposed 
method achieves 0.98 in accuracy, 0.93 in precision, 0.94 in recall, and 0.93 in F1 score, which is an improvement of 
9–25% compared to the popular integrated learning models, such as GBDT and XGBoost. By designing the ablation study, 
results demonstrate the method’s ability to accurately predict potential faults of oil and gas equipment, thereby facilitating 
the enhancement of predictive maintenance strategies.

Keywords  Decision support · Equipment predictive maintenance · Data mining · Machine learning · Industrial health 
assessment
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CNN	 �Convolutional Neural Networks
FN	 �False Negative
FP	� False Positive
GBDT	 �Gradient Boosting Decision Tree
GPU	 �Graphics processing unit
ML	� Meta-learning methods
ML-CSNN	 �Meta-Learning Convolutional Shrinkage 

Neural Networks
RAM	 �Random Access Memory
RF	 �Random Forest
SNN	 �Shrinkage Neural Networks
SVM	� Support Vector Machine
SP-SVM	� Support Vector Machine model based on 

sensitive parameters
TN	 �True Negative
TP	� True Positive

Introduction

In recent years, the global petroleum industry has main-
tained a stable development trend. There has been an 
increasingly stringent demand for the safety performance of 
oil and gas equipment in petroleum production, transporta-
tion, and management. The oil and gas equipment includes 
pumps and sensors such as temperature, pressure, and flow 
(Iraji et al. 2023b). The pumps often apply in drilling fluid 
circulation, crude oil extraction to transport processing, as 
well as water injection and environmental management. 
The sensors monitor and control temperature, pressure, liq-
uid level, flow and other key parameters from drilling to 
production, ensuring safe and efficient oil exploration, pro-
duction and environmental monitoring (Iraji et  al. 2024). 
Simultaneously, a series of automation and intelligent tech-
nologies have been introduced, continuously improving the 
production scheduling and process control levels of oil and 
gas equipment (Jacobs 2018; Wang et al. 2012). However, 
it is worth noting that due to the large scale and complex-
ity of oil and gas equipment, various safety hazards exist at 
different stages of production practice (Chen et  al. 2022). 
Equipment failures and shutdowns can lead to production 
interruptions and losses, and in severe cases, may result in 
safety accidents and environmental pollution, thereby caus-
ing significant economic losses to enterprises and society 
(Bukhtoyarov et al. 2019; Woldesellasse and Tesfamariam 
2023). Additionally, equipment failures and damage can 
affect the service life of equipment, increase maintenance 
costs, and typically require a large amount of manpower, 
material, and financial resources for maintenance and man-
agement (Pivovarov and Duvakina 2020).

To effectively improve the operational status of oil 
and gas equipment, it is essential to focus on equipment 

maintenance and management, aiming to minimize the fail-
ure rate of equipment and ensure its operational status tends 
towards stability and reliability (Johnstone and Curfew 
2012). Currently, major oil and gas companies place signifi-
cant emphasis on the management and maintenance of oil 
and gas equipment in their operational practices. However, 
influenced by traditional concepts, some companies still 
rely on manual real-time monitoring of equipment operat-
ing parameters, including temperature, pressure, vibration, 
flow rate, and others (Aranha et  al. 2024). This approach 
suffers from inefficiency, subjectivity, uncertainty, and high 
labor costs. It often involves post-processing and emer-
gency maintenance, making it difficult to identify potential 
problems and potential failures of equipment in advance, 
and lacking preventative maintenance measures (Nithin 
et al. 2021).

With the development of information technology, the 
field of crude oil transportation in oilfields is gradually mov-
ing towards digitization and intelligence (Choi et al. 2023). 
Predictive maintenance of oil and gas equipment based on 
machine learning can promptly identify problems existing 
in the operation of oil and gas equipment (Lu et al. 2020). 
By collecting and analyzing equipment status information, 
supported by data mining techniques, potential hazards of 
equipment can be analyzed and diagnosed, thereby achiev-
ing predictive maintenance of equipment (Xia et al. 2021).

Predictive maintenance of oil and gas equipment is 
regarded as a multi-class classification problem of equip-
ment failures, with various types of equipment failures 
considered as distinct categories (Khalid et  al. 2021). By 
collecting large amounts of equipment operational data and 
employing machine learning techniques such as support 
vector machines (Mohammed 2023), random forests (Xie 
et al. 2019), neural networks (Al-Sabaeei et al. 2023), clas-
sification models are trained to predict potential failure types 
based on the current equipment status (Park et  al. 2021). 
Through this approach, appropriate maintenance measures 
can be taken before equipment failure occurs (Zhang and Li 
2019), thereby minimizing downtime and repair costs to the 
greatest extent possible.

The use of machine learning algorithms has been enor-
mously successful as a way to address the challenge of 
equipment predictive maintenance in various fields (Li 
et al. 2018). Nguyen et al. (2022) proposed a digital twin 
approach to system-level detection and diagnosis in ther-
mal-hydraulic systems in nuclear power plants, but the mod-
eling is difficult and requires the support of a large amount 
of physical information, which is very difficult to collect. 
Thus, data-driven models are considered instead of a digital 
twin model. Fan et al. (2020) used K-nearest neighbors and 
naive Bayes classifies to classify wafers as normal or abnor-
mal. Hsu and Liu (2021) proposed a multiple time-series 
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convolutional neural network model for fault detection in 
semiconductor manufacturing and the core is that key fea-
tures of device sensors can be automatically learned by 
stacking convolutional pooling layers. Wu et al. (2023) pre-
sented a Transformer-based classifier that can effectively 
identify different known types and severity of fault condi-
tions, as well as novel fault detections. But these method 
does not combine expert experience and actual parameters. 
Therefore, expert experience and oil production engineering 
sensitive parameters are integrated into the machine learn-
ing model to enhance its interpretability and generalization.

Moreover, machine learning methods have been widely 
used in the oil and gas industry, especially in the analysis 
of well logs, lithofacies and depositonal environments, and 
seismic data inversion. The K-means unsupervised classi-
fication algorithm can characterize the reservoir sequences 
and precisely define the reservoir rock types. Two deep 
learning models, ResNet and 1D CNN, were trained and 
evaluated for clogging porosity prediction, in which the 
1D CNN model performed well. In addition, the XGBoost 
algorithm was used to predict the rock types with high accu-
racy (Iraji et al. 2023a) However, the above models do not 
consider the time series dynamic information and signal 
structure information in the data, and have poor generaliza-
tion. Therefore, meta-learning techniques are introduced to 
enable the model to more rapidly adjust its parameters in 
response to the data characteristics of different wells and 
varying operating conditions. Then the time domain and 
frequency domain feature extraction technology is used to 
comprehensively capture the time domain characteristics 
and frequency domain characteristics of the oil well.

Despite the potential of machine learning methods in 
predictive maintenance of oil and gas equipment, they still 
face numerous challenges and shortcomings (Niyonambaza 
et  al. 2020). In the oil and gas industry, due to the diver-
sity of data sources and inconsistency in data quality, issues 
such as missing data, noise, and outliers may exist, which 
can affect the accuracy and robustness of machine learning 
models (Joseph et al. 2022). Moreover, fault samples of oil 
and gas equipment are often much fewer than normal sam-
ples, resulting in a severe imbalance in the training dataset. 
This imbalance can cause the model to tend towards predict-
ing the majority class while neglecting the minority class, 
thus affecting the model’s performance. Ensemble learning 
technology is considered to address this problem. Ensemble 
learning can address the shortcomings of individual models 
by combining the predictions of multiple models to enhance 
overall generalization ability. Additionally, ensemble learn-
ing can increase robustness, reduce noise interference, and 
improve stability (Fomin et al. 2018).

In this paper, the contributions are the following: (i) By 
utilizing an ensemble learning framework, a new multi-class 

classification model named DTSKL-Boost is proposed. The 
motivation for using AdaBoost is that AdaBoost demon-
strates strong versatility, making it applicable to various 
types of classification tasks, as well as both discrete and 
continuous feature data. (ii) The workflow of the proposed 
method is to input the actual production data, and then clas-
sify the working conditions using ML-CSNN, a hybrid 
model based on convolutional neural network and expert 
rules, and SVM model based on sensitive parameters of oil 
production engineering. Finally, the classification results of 
the three methods are passed through the voting method to 
obtain the working condition prediction results. (iii) Expert 
rules and sensitive parameters of oil production engineering 
are incorporated into the operating condition recognition 
model to enhance the interpretability of the identification 
results. (iv) Data mining is conducted on the historical 
records of equipment failures to extract unique training fea-
tures for different types of failures, thereby constructing a 
training sample library. (v) In order to evaluate the perfor-
mance of DTSKL-Boost model, eight models were tested 
on the set of oil field production dataset. (vi) According to 
the results of the ablation tests, it was found that the ensem-
ble of three methods performs better than any single method 
or any combination of two methods.

The paper is organized as follows: a introduction of 
key technologies in the field of predictive maintenance is 
provided in Section “The key technologies of predictive 
maintenance”. The details of the DTSKL-Boost model are 
outlined in Section “Framework for the equipment predic-
tive maintenance”. The tests on the datasets among the 
proposed method and other techniques are presented and 
discussed in Section “Test results and analysis”. Further 
discussion is in Section “Discussion”. Conclusions are in 
Section “Conclusions”.

The key technologies of predictive 
maintenance

Big data analytics warehouse

According to the research results of relevant scholars and 
experts, the so-called data warehouse refers to a collection 
of data, which is relatively stable and clear in subject mat-
ter, and can provide data support in management decision-
making, presenting the development of data laws. The data 
in the data warehouse originates from the collection and 
integration of information sources and is stored in a unified 
manner in a specific environment, so that enterprises can 
quickly and easily query and utilize this information to sup-
port the decisions they make (Tariq et al. 2021). At present, 
many oil and gas companies have introduced information 
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the equipment monitoring value data distribution and prob-
ability model, you can use statistical and distance metric test 
to detect outliers, so as to determine the normal operation 
status of the equipment or not (Fernandes et al. 2022).

However, in the field of predictive maintenance of oil and 
gas equipment, the application depth of data mining tech-
nology still has some room for improvement, and the prob-
lems exposed in the actual application are relatively more. 
For example, the challenges of multi-dimensional and large 
amount of data sets, the problem of handling redundant 
information and noisy data, and the invalidity of mining 
results (Fan et al. 2014; Mahdavi Kalatehno and Khameh-
chi 2024). In view of the aforementioned issues, it is neces-
sary to adjust and optimize the application of data mining 
technology in the process of equipment maintenance and 
repair based on the findings of this research. At the same 
time, with the increase of automation and intelligence of 
the equipment itself, the demand for predictive maintenance 
of the equipment will become bigger and bigger (Quinlan 
1986).

The application of predictive maintenance technol-
ogy focuses on how to build a model, and to ensure that 
the monitoring of equipment operating conditions and 
fault diagnosis tend to be effective, it is necessary to fol-
low the principle of applicability to build the equipment 
maintenance model. According to the corresponding mode 
to play the corresponding function, of course, considering 
the potential value of data mining technology is high, so in 
practice can be used in combination with different modes, 
so as to achieve predictive accuracy (Steinwart and Christ-
mann 2008).

Framework for the equipment predictive 
maintenance

Oil and gas equipment has a large scale and relatively com-
plicated types, in the production practice of each link there 
are different degrees of safety hazards, if equipment fail-
ure will easily lead to safety accidents, thus causing serious 
economic losses to enterprises and society. In view of this, 
in order to effectively improve the operation of oil and gas 
equipment, it is necessary to do a good job of maintenance 
and management of equipment, to maximize the control of 
equipment failure rate, to ensure that the operation of equip-
ment tends to be stable and reliable. Based on data mining 
technology to implement predictive maintenance of oil and 
gas equipment, it is necessary to first diagnose equipment 
faults and understand the types and specific characteristics 
of equipment faults. In the diagnosis process, the main point 
of data mining technology is to collect and organize the 
operating parameters of the equipment unit, such as the data 

management technologies and methods in oilfield construc-
tion, and collected and organized data related to oil and gas 
production and management, and used these data to analyze 
the operation status of oil and gas equipment in different 
production processes, so as to achieve diagnosis and main-
tenance of equipment (Mohammadpoor and Torabi 2020; 
Ran et al. 2021; Abhulimen et al. 2018; Zhifeng 2019).

Data mining technology

The most representative definition of data mining is “the 
non-trivial process of obtaining correct, novel, potentially 
valuable, and ultimately understandable patterns from 
large amounts of data” (Fayyad et al. 1996). Data mining 
is divided into two main categories: descriptive and pre-
dictive. The former is to derive the inductive model of the 
implicit association in the data, while the predictive data 
mining technology is based on the existing data to analyze 
the current situation and then make judgments and deci-
sions with the actual situation. The application mode of data 
mining technology is also divided into many kinds, such as 
association analysis, classification, clustering, outlier analy-
sis, etc. (Elahifar and Hosseini 2024; Antonio et al. 2022) 
In the process of mode construction, it is required to collect 
and organize the historical data of the equipment so that it 
has certain reference value, however, training and learning 
around the data. The diagnosis knowledge base can be built 
based on the analysis results of equipment failure modes in 
the interpretation and evaluation, and the manual diagnosis 
and different types of data mining techniques can be com-
bined together to diagnose the equipment failure informa-
tion. The details are described as follows.

First, clustering. Diagnose and analyze the faults of the 
object equipment, extract its features, and classify them, and 
then discover the inherent common structure of the faulty 
equipment based on signal and system processing technol-
ogy methods; second, association analysis. Through model-
ing to describe the state of the equipment components, is 
the premise of parallel use of equipment to start the com-
parison, according to the difference between the input and 
output of the equipment and the model to identify the prob-
lems that arise in the operation of the equipment, based on 
this to explore the correlation within the equipment module; 
third, classification. The equipment status is monitored and 
formed into data, then compared with the fault knowledge 
base, and the fault is diagnosed according to the monitor-
ing value and fault type, and finally combined with fault 
handling methods to solve the problem; fourth, outlier anal-
ysis. Some of the data obtained by monitoring the equip-
ment may have certain differences with its normal model 
parameters, at this time, it can be determined that there are 
problems in some aspects of the equipment, in other words, 
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due to wax formation increases, which affects the load 
of the pumping well. A current, B current, and C current 
refer to the currents in the three different phases of the 
three-phase AC supply system, respectively. It is char-
acterized by the fact that the phases of the three-phase 
voltage and current differ 120 degrees from each other. 
This means that when A current is at its peak, B current 
is 120 degrees behind A current and C current is 240 
degrees behind A current (Table 2).

(2)	 Insufficient fluid supply

�Integrating the above screening results, considering 
those electrical parameters such as power, power con-
sumption and current are associated with maximum load 
and minimum load, Sunkenness, Wellhead temperature, 
and daily power consumption are finally selected as the 
training features for the self-learning of oil well under-
supply rule based on classification method. When a 
pumping well is undersupplied with fluid, the discharge 
capacity of the pump is greater than the fluid supply 
capacity of the formation, which leads to a low dynamic 
fluid level in the pumping well due to the undersupply, 
thus the Sunkenness of the well is low and the fluid can-
not fill the pump barrel; this then leads to a decrease in 
the efficiency of the pumping well and an increase in 
daily power consumption; it also leads to a change in 
the flow rate of the fluid at the wellhead, which causes 
the wellhead temperature to change as well (Table 3).

(3)	 Gas impact

�Combining the above screening results, Daily power 
consumption, Dynamic fluid level, Unloading slope, 
Maximum load, Minimum load, Load difference are 
finally selected as the training features for the self-learn-
ing of gas impact rule based on classification method. 

of the equipment under normal operating conditions and the 
data of the equipment in the fault state, and at the same time, 
to know the fault category. In this way, based on the fault 
category, fault parameters and historical data, a data mining-
based training sample library can be constructed. Through 
the application of data mining technology, the laws and fea-
tures can be extracted from the huge data samples, so that 
the characteristics of various faults can be mined(Guo et al. 
2003; Agwu et al. 2020).

Sample set construction

There are many types of oilfield equipment failures, and 
the troubleshooting is not targeted, mostly dealt with after 
the occurrence of accidents, without comprehensive equip-
ment monitoring means for effective auxiliary management, 
the fundamental reason being that the weights of factors 
affecting equipment failures cannot be determined through 
manual experience. According to the common faults of 
oilfield equipment, the types of faults and feature sets are 
clarified, and a sample library is established. According to 
the relevant provisions of the oil and gas equipment failure 
standards, the sample pool is divided into seven major cat-
egories, totaling 38 items as shown in Table  1.

(1)	 Waxing

�Considering the above screening results, the electrical 
parameters such as power, electrical energy value and 
current are associated with maximum load and minimum 
load, so finally Maximum load, Minimum load, Load 
difference, A current are selected as the training features 
for the self-learning of oil well waxing rules based on the 
classification method. When wax formation occurs in a 
pumping well, the resistance of pumping rod movement 

Table 1  Classification of oil well operating conditions
Category Item
Healthy 
production

Normal

Formation Insufficient fluid supply, liquid percussion, gas 
impact, air lock, suction and spray, take time 
out, sand production, thick oil, waxing

Pipe Leakage of pipe, pipe removal
Rod Break of rod, rod clamp, oil thickens and slack-

ens, wax slowing
Pump Swim Vail miss, fixed vail leakage, double vane 

miss, piston leakage, pump body leakage, pump 
stuck, suction inlet block, vail hood broken

Ground Hang on, touch down, remove the cylinder, 
oscillation, oil beam stuck

Data Dead point ahead, dead end lag, period exten-
sion, cycle shortening, mutation of load, drift of 
load, load serration, displacement loss, disorder 
of displacement

Table 2  Selection of characteristics for waxing
F-test Correlation of 

discrete targets
Pearson correla-
tion coefficient

Spearman corre-
lation coefficient

Maximum 
load

Positive total 
active energy 
value

Maximum load Maximum load/
load difference

Minimum 
load

Load difference Minimum load Maximum load/
minimum load

C current Total power 
average over the 
cycle

A current/C 
current

Load difference

A current Minimum load Positive total 
active energy 
value

Cumulative 
power consump-
tion of inverter

B current Maximum load Maximum load/
load difference

B current/A 
current
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When gas impact occurs in a pumping well, the maxi-
mum load, minimum load, load difference and daily 
power consumption of the pumping well are affected 
because the gas enters the pump barrel and causes the 
liquid column load of the pumping well to decrease; the 
pumping pump valve ball in gas-bearing oil wells gener-
ally opens with a lag, and only when the plunger meets 
the liquid level can it unload quickly, so the unloading 
slope can also be used as a basis for judgment; at the 
same time, when the dynamic well produces abnormal 
gas impact conditions, so the fluid level of the oil well 
decreases, the occurrence of at the same time, when the 
dynamic fluid level of the well decreases, the phenom-
enon of degassing at the bottom of the well produces 
abnormal gas impact conditions, so the dynamic fluid 
level can also be used to diagnose the gas impact of oil 
wells (Table 4).

The ensemble learning model DTSKL-Boost

The DTSKL-Boost Model is a meta-learning ensemble algo-
rithm that integrates three sub-models: meta-learning con-
volutional shrinkage neural network (ML-CSNN), a fusion 
model based on convolutional neural network and expert 
rules, and a support vector machine model based on sen-
sitive parameters of oil production engineering. Targeting 
different characteristic parameters of oil and gas equipment, 
various classification models are employed from differ-
ent perspectives to predict equipment failures in advance, 
enhancing the reliability of the prediction results, as shown 
in Fig.  1. By introducing meta-learning, expert rules, and 
sensitive parameters of oil production engineering, the 

Table 3  Selection of characteristics for insufficient fluid supply
F-test Correlation 

of discrete 
targets

Pearson correla-
tion coefficient

Spearman corre-
lation coefficient

Sunkenness Positive total 
active energy 
value

Daily power 
consumption

Sunkenness/
daily power 
consumption

Wellhead 
temperature

Sunkenness Minimum load Wellhead tem-
perature/well-
head oil pressure

Maximum of 
total power over 
the cycle

Maximum 
load

Wellhead 
oil pressure/
wellhead 
temperature

Daily power 
consumption

Daily power 
consumption

Load 
difference

Positive total 
active energy 
value

Cumulative 
power consump-
tion of inverter

Total power 
average over 
the cycle

Cumula-
tive power 
consumption 
of inverter

Maximum load Positive total 
active energy 
value

Table 4  Selection of characteristics for gas impact
F-test Correlation of 

discrete targets
Pearson correla-
tion coefficient

Spearman corre-
lation coefficient

Inverter out-
put voltage

Positive total 
active energy 
value

Daily power 
consumption

Maximum load/
load difference

Daily power 
consumption

Load 
difference

Minimum load Maximum load/
minimum load

Unloading 
slope

Maximum load Maximum load/
load difference

Load difference

Total power 
average over 
the cycle

Total power 
average over 
the cycle

Dynamic fluid 
level/load 
difference

Cumulative 
power consump-
tion of inverter

Dynamic fluid 
level

Minimum load Maximum load Positive total 
active energy 
value

Fig. 1  The structure of DTSKL-Boost method
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utilized for inner-loop training of the model, facilitating the 
updating of model parameters and adaptation to new tasks. 
Consequently, the model can perform accurate predictions 
on the query set. The query set is employed to evaluate the 
model’s generalization ability after adapting to new tasks, 
thereby enhancing the model’s ability for few-shot learning. 
For the support set Dtrs in the training set, the initial param-
eters θ of the ML-CSNN model are trained. This is achieved 
by summing up all losses in the query set Dtrq and updating 
the optimal parameters θ∗. In the testing set, the optimal 
parameters θ∗ are fine-tuned through the support set, and 
the ML-CSNN model is utilized to test the parameters in 
the query set, forming the process of “model training-model 
updating-model testing”. Through meta-learning, the model 
can find common parameters ω∗ suitable for different oil 
wells and different dataset tasks. The formula for calculat-
ing the common parameters is shown in Eq. (2).

ω∗ = arg min
ω

∑
Ti∼p(T ),Di∼Ti

Li(Di, ω)� (2)

where ω∗ represents the optimal parameter values obtained 
through meta-learning, Ti denotes all possible tasks, Di is 
the support set sampled from task Ti, p(T) denotes the task 
distribution, and Li(Di, ω) represents the loss incurred by 
training on support set Di for task Ti. ω is the parameter of 
the meta-model. Equation (2) aims to find the parameter ω∗ 
that minimizes the sum of losses incurred from training on 
the support sets of all tasks.

(2)	 Hybrid model based on convolutional neural networks 
and expert rules

�By utilizing convolutional neural networks, the model 
can efficiently and accurately process massive and 
diverse dynamometer card data, thereby ensuring good 
real-time performance. Moreover, to address the issue 
of low accuracy in recognizing dynamometer cards with 
similar but distinct patterns, this paper introduces expert 

model exhibits stronger learning capabilities for equipment 
failure types with limited labeled data, and its prediction 
results are more interpretable. To ensure that the model can 
effectively adapt to different fault prediction tasks in prac-
tical applications, a voting mechanism is adopted to com-
prehensively evaluate the prediction results of the three 
sub-models, constructing an ensemble learning framework. 
This enables the model to achieve high prediction accuracy 
and good robustness.

(1)	  Meta-learning convolutional shrinkage neural network

�To address the challenge of limited labeled data for 
equipment failure and the complexity and variabil-
ity of operating conditions, a meta-learning convolu-
tional shrinkage neural network model is constructed. 
Targeting equipment operating parameters, the neural 
network framework combines meta-learning modules, 
time-domain and frequency-domain feature extraction 
techniques, and embedded shrinkage neural networks, 
as illustrated in Fig. 2. The model consists of 1 input 
layer, 4 convolutional layers, 4 SNN layers, and 1 fully 
connected layer.
�The condition sample data is divided into training set 
Dtr and testing set Dts. On both the training and testing 
sets, a similar matching method is employed to sepa-
rately partition them into support sets and query sets. 
The similarity calculation formula is represented as 
Eq. (1).

similarity(di, dj) = di · dj

∥di∥ · ∥dj∥ � (1)

where di represents the vectors of condition sample data 
and dj  represents the norms of vectors. Samples for which 
the similarity calculation result exceeds a certain thresh-
old are considered similar samples. These similar samples 
are then designated as the support set, while the remaining 
samples are designated as the query set. The support set is 

Fig. 2  The structure of the ML-CSNN model
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weight factors are formed by combining expert experi-
ence. Expert rules corresponding to oil well faults and 
their weight factors are shown in Table 6.
�The comparison between the condition recognition 
results of the AlexNet model and the inference results 
obtained through expert rules is conducted as follows: if 
the results of both methods are consistent, the judgment 
result is directly outputted. However, if there is a dis-
crepancy between the two results, the judgment result 
with higher confidence is outputted.

knowledge to construct a logic discriminator based on 
expert rules. Weight factors are incorporated to enhance 
the accuracy and reliability of condition identification 
(Fig. 3).
�The convolutional neural network model is constructed 
based on the AlexNet model, which exhibits power-
ful capabilities in handling large-scale image data 
with multiple classification categories. Additionally, 
it includes mechanisms to prevent overfitting of data, 
such as dropout. The structure of the neural network 
model is detailed in Table 5.
�The data of oil well indicator diagram is processed and 
analyzed in a period of 7 days. The expert rules and 

Table 5  The structure of ALEXNET model
Layer type Kernel size Stride Number Weight
Input – – – –
Conv 11 × 11 4 32 11 × 11×1 × 32
Max pooling 3 × 3 2 32 –
Conv 5 × 5 2 64 5 × 5 × 32 × 64
Max pooling 3 × 3 2 64 –
Conv 3 × 3 1 128 3 × 3 × 64 × 128
Conv 3 × 3 1 128 3 × 3 × 64 × 128
Conv 3 × 3 1 128 3 × 3 × 64 × 128
Max pooling 3 × 3 2 128 –
Flatten – – – 4096
Fully connected – – – 1024
Dropout – – – 1024
Fully connected – – – 512
Dropout – – – 512
Fully connected – – – 128

Table 6  The structure of ALEXNET model
Fault type Condition Weight 

factor
Leaking valve 
flap

Maximum load reduction > 30% 0.6
Minimum load increase > 2.5% 0.1
Card area reduction > 35% 0.3

Fixed valve 
leakage

Maximum load reduction > 10% 0.1
Minimum load increase > 30% 0.6
Card area reduction > 35% 0.3

Pump rod 
breakage

Minimum load/Minimum load under 
normal operating conditions ≤ 95%

1.0

Continuous jet 
with pump

Maximum load − Minimum load/Maxi-
mum load ≤ 8%

1.0

Pumping rod 
slowing down

Minimum load = 0 0.7
Card area reduction > 20% 0.3

Leakage of 
fixed valve and 
free valve

Maximum load reduction > 30% 0.3
Minimum load increase > 20% 0.3
Card area reduction > 40% 0.4

Fig. 3  The flowchart of hybrid model

 

1 3

46  Page 8 of 16



J Petrol Explor Prod Technol (2025) 15:46

temperature, etc., as inputs, and outputs the types of faults. 
The following contents provides details for testing configu-
rations and results.

Datasets

One hundred wells from the Shengli oil field in China were 
selected for theoretical validation, and historical operating 
parameters of each well were collected through sensors 
from 2019 to 2022. The parameters included wellhead oil 
pressure, wellhead temperature, daily power consumption, 
maximum load, minimum load, submergence, dynamic 
fluid level, and current, among others. The data collection 
interval is one record per minute so the dataset comprises 
approximately 200 million records. Table 7 shows only 
some of the sample data.

Model training

The model in this paper is obtained using python program-
ming in an environment of AMD Ryzen 5 4600U with 
Radeon Graphics, 2.10 GHz, Tesla V100s GPU and 16 GB 
of RAM. There are many hyperparameters in the DTSKL-
Boost model, and these parameters can affect the method 
classification effect to a certain extent, so the parameter 
setting is of great significance. Different from the cluster 
validity in the traditional K-means clustering which use 
within-cluster sum of squares or silhouette coefficient, a 
10-fold cross-validation approach is used to evaluate model 
performance. Meanwhile, automated tuning techniques, 
such as grid search, are utilized to search for the optimal 
parameter combinations, thereby enhancing the efficiency 

(3)	 Support vector machine model based on sensitive 
parameters of oil production engineering

�Support Vector Machine model based on sensitive 
parameters (SP-SVM) combines with practical produc-
tion experience in oil fields. It extracts key points, key 
segments, and areas of the dynamometer card through 
data mining methods which enriches the technical 
means of dynamometer card data mining and recogni-
tion. Thereby it can achieve the prediction of equip-
ment. The model architecture is shown in Fig. 4.
�For the input real-time production data, the data is nor-
malized spatially, and the derivative of the normalized 
data is calculated. The points where the derivative is 
zero represent the points of maximum change, which 
are used to determine the inflection points of the dyna-
mometer card. By calculating the positions and loads 
of points A, B, C, and D, as well as the average load 
of segment BC, the average load of segment DA, and 
the area of the dynamometer card, sensitive parameter 
data related to oil production engineering are extracted. 
These sensitive parameters are then fed into the support 
vector machine model for fault classification, resulting 
in the results of this method.

Test results and analysis

To validate the feasibility and effectiveness of the proposed 
model, tests were conducted using pump-jack wells in an 
oilfield located in eastern China. The model takes real-
time production data from the wells, such as oil pressure, 

Fig. 4  The structure of SVM model
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four evaluation metrics, and the confusion matrix is shown 
in Table 8.

Where True Positive is the positive samples that are pre-
dicted to be positive by the model; False Positive is the neg-
ative samples that are predicted to be positive by the model; 
False Negative is the positive samples that are predicted 
to be negative by the model; True Negative is the negative 
samples that are predicted to be negative by the model. The 
three evaluation indexes of accuracy, precision and recall 
are calculated as shown in (3)–(6).

accuracy = TP + TN

TP + FN + FP + TN
� (3)

precision = TP

TP + FP
� (4)

recall = TP

TP + FN
� (5)

F1 =2 × precision × recall

precision + recall
� (6)

Test results and analysis

Daily production data from various wells for the period from 
January to July 2023 were collected to validate the model.

(1)	 Ablation study on ensemble learning

�To validate the effectiveness of the three methods in 
ensemble learning, separate ablation tests were con-
ducted for each model. Firstly, classification experi-
ments were performed for each of the four models 
individually. Then, based on the AdaBoost ensemble 
framework, two of these models were combined to con-
duct six sets of tests. Furthermore, three of the models 

of parameter tuning during the training process. To prevent 
overfitting in the AdaBoost algorithm, an early stopping 
strategy is introduced. This strategy involves monitoring the 
model’s performance on a validation set and stopping the 
iteration when the performance no longer improves. Finally, 
after 150 iterations, the model achieved an accuracy of 0.98. 
Moreover, the accuracy of validation is 0.92 (Fig. 5).

Evaluation indicators

In the classification task, the performance of the classifica-
tion method is evaluated comprehensively by using three 
evaluation metrics: accuracy, precision, recall and F1 score. 
The confusion matrix is usually used to calculate the above 

Table 7  Sample data
Sample 1 Sample 2 Sample 3 Sample 4 Sample 5 Sample 6

Wellhead oil pressure 0.18 0.63 0.45 0.98 0.25 0.46
Wellhead temperature 4.35 3.65 4.32 3.98 4.81 3.73
Daily power consumption 64.3 69.5 61.2 57.3 53.9 51.2
Maximum load 51.2 53.5 52.9 48.3 45.7 59.5
Minimum load 42.1 46.4 44.6 42.7 39.4 46.4
Submergence 4.67 3.76 6.32 9.23 4.12 7.92
Dynamic fluid level 1265 1209 1187 1098 1208 1361
A current 32.1 35.4 31.9 37.4 29.8 20.5
B current 31.5 34.9 33.1 36.4 31.2 23.9
C current 33.5 35.6 32.8 35.9 30.4 22.9
Fault type Wax Thick oil Insufficient fluid supply Piston leakage Gas impact Hang on

Table 8  The results of ablation test
Ground truth Predict class

Positive class Negative class
Positive class True Positive False Negative
Negative class False Positive True Negative

Fig. 5  The accuracy of train and validation process
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�From Table 10, it can observe that within the same 
ensemble learning framework, the proposed method 
demonstrates the best performance across all four eval-
uation metrics. DTSKL-Boost exhibited enhancements 
ranging from 0.04−0.17 on accuracy, 0.02−0.09 on 
precision, 0.03−0.15 on recall, 0.03−0.11 on f1 score, 
compared to the other six methods. The analysis reason 
may be that the GBDT and RF method integrate mul-
tiple decision trees, and the method cannot accurately 
extract abnormal information of working conditions. 
The method use AdaBoost because it demonstrates 
strong versatility, making it applicable to various types 
of classification tasks, as well as both discrete and con-
tinuous feature data.

(3)	 Ablation study on ML-CSNN

�To demonstrate the effectiveness of incorporating time-
domain and frequency-domain feature extraction tech-
niques (4D-TF) and meta-learning methods (ML) into 
the shrinkage neural network, four sets of comparative 
experiments were conducted. The experimental results 
are shown in Table 11. It can be observed that the per-
formance of ML-CSNN is better than others. The rea-
son for the analysis may be that ML can quickly adapt to 
the data characteristics of different Wells and different 
working conditions, and 4D-TF can comprehensively 
capture the trend and periodic pattern of data over time.

were combined to obtain four different sets of ablation 
experiments. The results are shown in Table 9.
�From the data in Table 9, it can be observed that the test 
results of single models and those integrating only two 
models exhibit relatively small differences across the 
four evaluation metrics, with none yielding satisfactory 
results. The performance of integrating three models 
surpasses that of integrating two models but still falls 
short of DTSKL-Boost. The analysis reason may be that 
the three models identify the type of working condition 
from different aspects, which makes the accuracy reach 
the highest.

(2)	 Compared test on ensemble learning

�To further verify the accuracy of the DTSKL-Boost 
model, the test was designed to compare the proposed 
model with several established algorithms, including 
Gradient Boosting Decision Tree (GBDT), XGBoost, 
CatBoost, LightGBM, Random Forest (RF), and Stack-
ingClassifier. These models have approximately equal 
number of parameters. The XGBoost, CatBoost, Light-
GBM and StackingClassifier models also integrate the 
same model to maintain the consistent design approach.
�Given the inherent randomness inherent to algorithms, 
it is not uncommon for some methods to occasionally 
achieve the best score due to chance occurrences. To 
ensure a robust and comprehensive assessment, the 
methods are executed multiple times, and the average 
score across these runs is utilized to mitigate any reli-
ance on chance outcomes. The test results are shown in 
Table 10.

Table 9  The results of ablation study on ensemble learning
Model Accuracy Precision Recall F1 score
 ML-CSNN Hybrid model SP-SVM
✓ 0.91 0.88 0.89 0.94

✓ 0.87 0.82 0.87 0.89
✓ 0.85 0.84 0.87 0.89

✓ ✓ 0.93 0.86 0.86 0.92
✓ ✓ 0.89 0.88 0.90 0.93

✓ ✓ 0.85 0.88 0.83 0.85
✓ ✓ ✓ 0.98 0.93 0.94 0.93

Table 10  The results of compared test on ensemble learning
Model Accuracy Precision Recall F1 score
GBDT 0.81 0.84 0.79 0.88
XGBoost 0.92 0.89 0.91 0.90
CatBoost 0.94 0.91 0.89 0.85
LightGBM 0.89 0.85 0.90 0.87
RF 0.83 0.84 0.81 0.82
Stacking 0.89 0.85 0.90 0.87
ours 0.98 0.93 0.94 0.93

Table 11  The results of ablation study on ML-CSNN
Model Accuracy Precision Recall F1 score
ML 0.78 0.73 0.70 0.81
4D-TF+CSNN 0.84 0.86 0.81 0.93
CSNN 0.75 0.74 0.69 0.84
ML-CSNN 0.91 0.88 0.89 0.94

Table 12  The results of ablation study on hybrid model
Model Accuracy Precision Recall F1 score
AlexNet 0.67 0.61 0.59 0.72
AlexNet + Expert rules 0.87 0.82 0.87 0.89
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learning can dynamically adjust model hyperparameters 
based on continuous evaluation metrics, ensuring that the 
model operates at maximum efficiency. On the other hand, 
meticulous feature engineering to deepen the understand-
ing of the underlying data is crucial. Utilizing techniques 
such as mutual information, feature importance ranking, 
and even automatic feature selection algorithms can help 
identify the most discriminative features of each model and 
thus improve their predictive power.

In engineering practice, the integrated model is deployed 
in the actual equipment predictive maintenance system to 
monitor and predict various data from oil fields in real-
time. This supports maintenance decision-making and 
continuously optimizes and improves the model and sys-
tem based on feedback information, further enhancing the 
model’s predictive performance and stability. Adopting a 
DevOps approach with continuous integration/continuous 
deployment (CI/CD) pipelines ensures rapid iteration and 
improvement of both models and the supporting systems. 
Feedback from operational use, including maintenance out-
comes, should inform ongoing model refinements and sys-
tem optimizations.

Conclusions

This paper proposes a deep learning-based predictive main-
tenance method for oil and gas equipment. The main con-
clusions of this study are as follows. 

1.	 By analyzing the common faults of oil field equipment, 
seven categories and 38 fault types are determined. 
Each fault type is correlated with electrical parameters 
such as power, current, and load to screen the training 
features, so as to establish correlation links and form a 
feature set. The fault type and the corresponding fea-
ture set are integrated to establish a sample set for deep 
learning model training.

2.	 The AdaBoost algorithm is employed to integrate three 
models, thereby forming a robust classification model 
that significantly enhances the predictive capability for 
equipment failure.

3.	 Meta-learning is incorporated into the Convolutional 
Neural Network (CSNN) to enable the model to rapidly 
adjust its parameters using a small amount of new data, 
thus achieving more effective transfer learning. The 
combination of time-domain and frequency-domain 
feature extraction techniques effectively captures the 
dynamic changes and periodic characteristics of the 
equipment’s operating state.

4.	 Hybrid modeling approach is employed to integrate 
expert knowledge with AlexNet. Domain-specific rules 

(4)	 Ablation study on hybrid model

�To demonstrate the effectiveness of the hybrid model 
based on convolutional neural networks and expert 
rules, with AlexNet model as the baseline, two sets of 
comparative experiments are designed. The experimen-
tal results are shown in Table 12. From the results, it 
can be observed that using expert rules can significantly 
improve the accuracy of predictions. The reason for 
this improvement may be that the quality of the sam-
ple dataset is poor, leading to the inability of pure deep 
learning methods to accurately extract features from the 
data. The reason may be that the hybrid model can inte-
grate the flexibility of empirical data and the reliability 
of physical principles, and improve the prediction accu-
racy and generalization ability of the model.

(5)	 Ablation Study on SP-SVM

�To demonstrate the effectiveness of extracting oil pro-
duction engineering sensitive parameters before training 
the SVM model, two sets of comparative experiments 
are designed. The experimental results are shown in 
Table 13. It can be seen that extracting oil production 
engineering sensitive parameters from production data 
and then importing them into SVM for further feature 
extraction can significantly improve the accuracy of 
equipment failure prediction.

Discussion

The DTSKL-Boost method proposed in this paper integrates 
multiple models of different types, which increases the com-
plexity and computational cost of the models. Particularly 
in real-time applications, it may face high computational 
resource requirements. Combining different types of mod-
els may encounter challenges in consistency and stability, 
as there may be significant performance differences among 
different models. Therefore, engineering processing of dif-
ferent types of features is needed, and the input and output 
formats of different models need to be unified, which may 
increase the complexity of data integration and processing.

In the future, techniques for adaptively selecting the most 
appropriate parameters for the model will be investigated 
to improve overall performance. Techniques such as Bayes-
ian optimization, genetic algorithms, or reinforcement 

Table 13  The results of ablation study on SP-SVM
Model Accuracy Precision Recall F1 score
SVM 0.58 0.53 0.55 0.62
SP-SVM 0.85 0.84 0.87 0.89
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to a significant drop in output. (2) The oil pump cannot 
operate fully, resulting in reduced pump efficiency. (3) 
To maintain or increase production, the operation time 
or frequency of the oil pumping unit may need to be 
increased, thus increasing energy consumption. (4) It 
may cause the oil pumping unit and other related equip-
ment to operate under abnormal conditions, accelerating 
equipment wear and tear. (5) It may lead to instability 
in the oil pumping system, increasing the risk of safety 
accidents such as equipment overheating and pipeline 
rupture.

2.	 Liquid vibration

�The causes of vibration mainly include plunger-barrel 
collision and unstable liquid flow. Due to pump body 
damage or displacement, the plunger’s movement 
within the barrel may become unstable, resulting in col-
lisions with the barrel during the upstroke and down-
stroke. These collisions lead to instantaneous increases 
in hydraulic pressure within the pump, thereby generat-
ing vibration phenomena. In addition, pump body dam-
age or displacement can also cause unstable liquid flow 
within the pump. When the liquid flow is unstable, it is 
prone to causing phenomena such as vortices and bub-
bles, which exacerbate the vibration phenomena.
�Prolonged vibration accelerates the wear and aging of 
the oil pumping unit and its related equipment, shorten-
ing their service life. Vibration can also trigger safety 
accidents such as equipment detachment and pipeline 
rupture.

3.	 Sucker rod fracture

�During the oil production process, gas impact may occur 
due to changes in formation pressure or gas accumu-
lation during pumping. This impact generates intense 
vibration and shock forces on the sucker rod, leading 
to fractures in stress-concentration areas such as the arc 
transition zone and heat-affected zone. Under the effect 
of gas impact, the surface of the sucker rod may be more 
susceptible to corrosion, forming stress concentration 
points, which accelerate fatigue fractures.
�Macroscopically, the fracture surface of the sucker rod 
is usually relatively flat, with no obvious signs of eccen-
tric wear, bending, or diameter reduction, demonstrat-
ing typical characteristics of fatigue fracture. Fractures 
often occur in the arc transition zone of the sucker rod 
joint and its adjacent areas, which is closely related to 
stress concentration and the impact of gas.

and logic are directly integrated into the neural network, 
providing prior knowledge during the model training 
process to guide decision-making in alignment with 
domain expertise.

5.	 Support vector machine model is constructed based on 
sensitive parameters from oil production engineering. 
Based on oil production experience, sensitive param-
eters are extracted from the indicator diagram as input 
features for the model, which helps reduce the interfer-
ence of irrelevant features and enhances the accuracy of 
condition predictions.

6.	 The comparative experiment is conducted using real 
production data. The experimental results demonstrate 
that the DTSKL-Boost model improves accuracy, pre-
cision, recall rate, and F1 score by 9–25% compared 
to other models in predicting oil well equipment faults. 
Ablation experiments demonstrate that each module 
in the DTSKL-Boost method contributes to the accu-
racy of equipment fault prediction. The model can be 
deployed in actual production settings to optimize pro-
duction efficiency.

Appendix A. The causes and phenomena of 
different fault types

1.	 Insufficient fluid supply

�The causes of insufficient fluid supply are as follows: 
(1) The fluid supply pressure at the wellhead is low, 
which may be due to issues with the fluid supply sys-
tem, such as insufficient pump power of the lift pump or 
aging of the fluid supply pipelines. (2) Blockage in the 
fluid supply pipeline prevents the fluid from smoothly 
entering the oil pumping system. (3) Blockage in the 
crude oil transportation pipeline, which may be caused 
by the deposition of impurities in the oil–water mixture 
or corrosion inside the pipeline. (4) Damage to inter-
nal components of the lift pump, such as valve failure 
or pipeline rupture, affects the flow rate and pressure, 
leading to insufficient fluid supply. (5) Oversized equip-
ment results in the “over-equipment for underperform-
ing wells” phenomenon in low-yield wells, reducing 
equipment utilization efficiency. (6) Excessive stroke 
frequency increases system energy consumption and 
reduces system efficiency. (7) Deep burial of oil layers 
and small deep pumping force limit the full utilization 
of the well’s production capacity.
�The phenomena is as follows: (1) Insufficient fluid sup-
ply directly affects the oil production of the well, leading 
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oil leakage or gas ingress within the pump, further 
impacting its efficiency. Over time, oil pipes or suc-
tion lines may become clogged due to the deposition 
of impurities, wax solidification, or other factors, 
hindering the normal flow of oil. Improper pipeline 
design or installation can also contribute to blockage 
issues.

7.	 Sucker rod vibration and wobble

�When the oil well pump is blocked, the pressure distri-
bution within the pump changes, potentially generating 
lateral or impact forces. These forces are transmitted 
to the sucker rod, causing it to vibrate and wobble. In 
particular, the formation of a low-pressure gas pocket 
within the pump and its subsequent impact with the 
liquid surface during the downstroke of the plunger 
can result in a severe hydraulic hammer effect, further 
intensifying the vibration and wobble of the sucker rod.
�Changes in pressure within the pump due to blockage 
can also affect the overall mechanical balance of the 
pumping unit. When mechanical components are sub-
jected to uneven forces, additional vibration and wobble 
are generated. Blockage can impede the smooth flow of 
oil, affecting the lubrication of bearings and other mov-
ing parts. Inadequate lubrication increases friction and 
wear between components, ultimately triggering vibra-
tion and wobble.

8.	 Wellhead eccentric wear in pumping unit

�Wellhead eccentric wear in a pumping unit refers to the 
abnormal friction and abrasion between the polished 
rod and the wellhead sealing device (such as the pack-
ing box) due to poor alignment during operation. The 
primary causes include installation errors of pumping 
unit, well deviation and tree inclination, and unreason-
able design of polished rod and wellhead sealing device.
�Eccentric wear accelerates the wear of the polished rod 
and wellhead sealing device, shortening their service 
life. Severe eccentric wear can lead to oil leakage, shut-
downs, and other failures, disrupting normal oil produc-
tion operations. Frequent repairs and replacements of 
equipment components escalate production costs.

9.	 Wellhead leakage

�Wellhead leakage refers to the phenomenon where crude 
oil or oil-gas mixtures escape into the environment due 
to inadequate sealing at the pumping unit wellhead. The 
primary causes include poor sealing between polished 

4.	  Oil well clogging

�Under gas impact conditions, gas from the formation 
may be sucked into the pump, forming gas accumula-
tion. These gases occupy space in the wellbore, reduc-
ing the flow channels for liquids, leading to oil well 
clogging. Gas impact may also bring impurities and 
particles from the formation into the wellbore. These 
impurities deposit in the wellbore, further exacerbating 
oil well
�The components of the clogged material are diverse, 
including gas, impurities, particles, etc. The clogging 
locations are mostly located in the near-well area, 
which is related to the influence range of gas impact 
and impurity deposition.

5.	 Airlock

�The causes of airlock are as follows: (1) When the liq-
uid level drops too rapidly, the suction end of the oil 
well pump may inhale air, leading to the accumula-
tion of gas within the pump. (2) After a pipeline leak 
occurs, external air can be sucked into the pipeline, 
subsequently causing an airlock phenomenon within 
the oil well pump. (3) During maintenance, compo-
nent replacement, or pump restart, if the air within the 
pipeline is not properly expelled, it can also lead to 
airlock. (4) When there are foreign objects or obsta-
cles in the oil pipe, eccentric distances may occur, 
resulting in the accumulation of gas in the pipe and 
the formation of an airlock. (5) As the well tempera-
ture changes, the volume of oil vapor also changes, 
affecting the oil flow rate and oil pressure, which may 
also lead to an airlock phenomenon.
�Due to the obstruction of liquid flow caused by gas 
accumulation, the oil well pump is unable to effec-
tively extract the oil–water mixture, leading to a 
sharp decline in oil well production. When operat-
ing in an airlock state, the oil well pump requires 
more energy to overcome the gas resistance, thereby 
increasing energy consumption. Operating under an 
airlock condition for an extended period may accel-
erate the wear and aging of the oil well pump and 
related equipment, shortening their service life.

6. 	 Pumping unit blockage

�The interior of the oil well pump can become clogged 
due to the accumulation of impurities, waxy sub-
stances from crude oil, sand particles, and other 
materials, resulting in malfunction of the pump. 
Additionally, aging or damaged seals can lead to 

1 3

46  Page 14 of 16



J Petrol Explor Prod Technol (2025) 15:46

high-temperature, high-pressure wells. J Petrol Expl Prod Tech-
nol 10:1081–1095

Al-Sabaeei AM, Alhussian H, Abdulkadir SJ et al (2023) Predic-
tion of oil and gas pipeline failures through machine learning 
approaches: A systematic review. Energy Rep 10:1313–1338

Antonio N, de Almeida A, Nunes L (2022) Data mining and predic-
tive analytics for e-tourism. In: Handbook of e-Tourism. Springer, 
New York, pp 531–555

Aranha PE, Policarpo NA, Sampaio MA (2024) Unsupervised 
machine learning model for predicting anomalies in subsurface 
safety valves and application in offshore wells during oil produc-
tion. J Petrol Expl Prod Technol 14(2):567–581

Bukhtoyarov V, Tynchenko V, Petrovskiy E et al (2019) Intelligently 
informed control over the process variables of oil and gas equip-
ment maintenance. Int Rev Autom Control 12(2):59–66

Chen Z, Selere OO, Seng NLC (2022) Equipment failure analysis for 
oil and gas industry with an ensemble predictive model. In: Inter-
national conference on computational science and technology, 
Springer, New York, pp 569–581

Choi JE, Seol DH, Kim CY, et  al. (2023) Generative adversarial 
network-based fault detection in semiconductor equipment with 
class-imbalanced data. Sensors 23(4): 1889

Elahifar B, Hosseini E (2024) A new approach for real-time prediction 
of stick-slip vibrations enhancement using model agnostic and 
supervised machine learning: a case study of norwegian continen-
tal shelf. J Petrol Expl Prod Technol 14(1):175–201

Fan J, Han F, Liu H (2014) Challenges of big data analysis. Natl Sci 
Rev 1(2):293–314

Fan SKS, Hsu CY, Tsai DM et al (2020) Data-driven approach for fault 
detection and diagnostic in semiconductor manufacturing. IEEE 
Trans Autom Sci Eng 17(4):1925–1936

Fayyad U, Piatetsky-Shapiro G, Smyth P (1996) From data mining to 
knowledge discovery in databases. AI Mag 17(3):37–37

Fernandes M, Corchado JM, Marreiros G (2022) Machine learning 
techniques applied to mechanical fault diagnosis and fault prog-
nosis in the context of real industrial manufacturing use-cases: 
a systematic literature review. Appl Intell 52(12):14246–14280

Fomin DA, Antipov AE, Lapin DG (2018) Protection from corrosive 
destruction of deep-pump equipment in oil and gas well. Key Eng 
Mater 769:290–295

Guo G, Wang H, Bell D, et al. (2003) Knn model-based approach in 
classification. In: On the move to meaningful internet systems 
2003: CoopIS, DOA, and ODBASE: OTM confederated inter-
national conferences, CoopIS, DOA, and ODBASE 2003, Cata-
nia, Sicily, Italy, November 3–7, 2003. Proceedings. Springer, pp 
986–996

Hsu CY, Liu WC (2021) Multiple time-series convolutional neural 
network for fault detection and diagnosis and empirical study in 
semiconductor manufacturing. J Intell Manuf 32(3):823–836

Iraji S, Soltanmohammadi R, Matheus GF et al (2023a) Application of 
unsupervised learning and deep learning for rock type prediction 
and petrophysical characterization using multi-scale data. Geoen-
ergy Sci Eng 230:212241

Iraji S, Soltanmohammadi R, Munoz ER et al (2023b) Core scale 
investigation of fluid flow in the heterogeneous porous media 
based on x-ray computed tomography images: Upscaling and his-
tory matching approaches. Geoenergy Sci Eng 225:211716

Iraji S, De Almeida TR, Munoz ER et al (2024) The impact of het-
erogeneity and pore network characteristics on single and multi-
phase fluid propagation in complex porous media: An x-ray 
computed tomography study. Pet Sci 21(3):1719–1738

Jacobs T (2018) Ar headsets give oil and gas sector the quicker fix. J 
Petrol Technol 70(07):32–34

Johnstone J, Curfew J (2012) Twelve steps to engineering safe onshore 
oil and gas facilities. Oil Gas Facilities 1(04):38–46

rod and wellhead, failure of sealing devices, and exces-
sive backpressure.
�The impacts include environmental pollution, safety 
hazards, and economic losses. Leaked crude oil and oil-
gas mixtures contaminate soil, water sources, and other 
environments. Leaked oil-gas mixtures can easily trig-
ger fires, explosions, and other safety incidents. Leak-
age results in crude oil losses, hiking production costs 
and environmental remediation expenses.
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