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A B S T R A C T

The energy-intensive petrochemical industry contributes 14 % of global industrial emissions. In the face of 
climate change, there is an urgent need for the petrochemical industry transition to low carbon manufacturing. 
Deployment of carbon capture, utilization and storage (CCUS) technologies can effectively reduce carbon 
emissions from the petrochemical industry. However, the large-scale deployment of CCUS faces the obstacles of 
high energy consumption and high cost. Artificial intelligence (AI) has shown great potential to accelerate the 
large-scale deployment of CCUS in the petrochemical industry. Nevertheless, most AI-based approaches are still 
largely at the research stage and not yet widely adopted in industrial practice. This paper explores four aspects of 
AI for petrochemical industry to reduce CO2 emission, including the solvent selection and design for carbon 
capture, catalyst design for CO2 utilisation, hybrid process modelling for optimal design and operation, and life 
cycle sustainability assessment. We evaluate different promising approaches for AI in each aspect and highlight 
our key findings, with the goal to accelerate the petrochemical industry transition to carbon neutrality.

1. Introduction

Worldwide, the petrochemical industry contributes to 7 % of the 
global gross domestic product (GDP) and manufactures approximately 1 
billion tonnes of essential commodities such as plastics and synthetic 
fibres. The petrochemical industry converts feedstocks (e.g. naphtha, 
liquefied natural gas) to chemical building blocks (e.g. ethylene, 
ammonia), and then to final products (e.g. plastics, fertilisers) (Cullen 
et al., 2024). One important product of the petrochemical industry is 
plastics, which is widely used in packaging, construction and textiles. 
The annual consumption of plastics is increasing and is considered to be 
strongly correlated with GDP growth (IEA, 2018). However, significant 
amount of CO2 emission is released with the development of petro
chemical industry. According to the International Energy Agency (IEA) 
report, the petrochemical industry worldwide consumes 14 % of global 
crude oil and 9 % of nature gas. It also generates 1.3 Gt-CO2/year 
(roughly 14 % of the global CO2 emission from industry), making it one 
of the culprits for the global warming (IEA, 2020). About 60 % of these 
are energy related CO2 emission, primarily resulting from fuel com
bustion for separation and conversion processes (Yan et al., 2024). 

Under the net-zero scenario, the petrochemical industry is now faced 
with the major task of reducing carbon emissions and an urgent tran
sition to sustainable petrochemical production.

Currently, alternative feedstocks and recycling are deployed to reduce 
CO2 emissions from the petrochemical industry. However, these mea
sures address only the symptoms rather than the root causes of the 
problem. For instance, only 9 % of the waste plastic generated globally is 
successfully recycled (OECD, 2022). Looking ahead, carbon capture, 
utilisation and storage (CCUS) will play a key role in reducing CO2 
emission from petrochemical industry due to its direct mitigation ability 
and carbon utilisation potential for producing additional value-added 
chemicals or fuels. Examples include green ethylene production 
combining carbon capture with wind power (Nyhus et al., 2024) and 
blue hydrogen production using natural gas reforming with CCUS 
(William et al., 2023). The IEA predicts that CCUS will be instrumental 
in reducing carbon emissions from the petrochemical industry by over 
30 % by 2050, serving as the backbone of the petrochemical sector to
wards net-zero emissions (IEA, 2020). Nevertheless, with the consider
ation of two factors: (a) the maturation of a chemical process typically 
takes thirty to fifty years from lab-scale studies to commercial 
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deployment; and (b) CCUS faces challenges of high energy consumption 
and high cost. It is difficult to widely deploy the commercially available 
CCUS technology for the petrochemical industry to combat the climate 
change issues in the short term (Gupta et al., 2024; Hong, 2022). For 
example, China plans to peak its carbon dioxide emissions by 2030, with 
less than 5 years from now, it is very challenging to develop a mature 
CCUS technology for the chemical industry using previous paradigm of 
chemical engineering research.

Artificial intelligence (AI) inspires new ways to accelerate industry 
process development towards the 4th industrial revolution (Chiang et al., 
2022). “AI for science and engineering” has become a time-saving and 
cost-effective approach to accelerate industrial process development. 
The AI-driven technologies are already transforming other industries 
such as AI-driven drug design (Arnold, 2023), natural language pro
cessing (NLP) in new materials discovery (Jiang et al., 2025), and ma
chine learning (ML) in molecular design (Lemaoui et al., 2023). With the 
help of ML, problems in chemical engineering that were difficult to solve 
with traditional methods due to high computational demand become 
feasible, such as global optimization of catalytic reaction networks 
(Margraf et al., 2023), prediction of amine emissions from carbon cap
ture process (Jablonka et al., 2023) and design of gas separation mem
branes (Li et al., 2025). The momentum is growing for exploring and 
employing AI in CCUS for the petrochemical industry (Hussin et al., 
2023), which will accelerate the research in this field from different 
perspectives including solvent selection and design, catalyst design, 
hybrid process modelling, life cycle assessment (LCA) and sustainability.

We suggest four different AI-driven directions (refer to Fig. 1) for 
CCUS development in the petrochemical industry from micro to macro 
perspectives as state-of-the-art solutions to accelerate petrochemical 
industry transition towards sustainability.

2. Potential AI applications, current status and future 
challenges

2.1. Solvent selection and design for carbon capture

Amine scrubbing is regarded as the most mature carbon capture 
technology and has been applied for capturing CO2 from natural gas 
processing (IEA, 2020) and power plants (Wang et al., 2015). However, 
solvent-based carbon capture is still very energy-intensive and costly 
(Borhani et al., 2024). Changing the solvent has great potential to 
improve the performance of carbon capture. For example, alternative 

solvents like piperazine (PZ) can reduce energy consumption from 3.7–4 
GJ/tonne (using MEA) to less than 3 GJ/tonne for power plants (Otitoju 
et al., 2021) and for ethylene plants (Ma et al., 2024). This is due to the 
fact that different substituent groups on the amino nitrogen atom affect 
the thermodynamic properties of solvents as well as the kinetics of their 
absorption reactions. Therefore, selecting and designing 
high-performance solvents is significant in overcoming the main ob
stacles for the commercial deployment of carbon capture.

The selection and design of solvents in carbon capture requires a 
balanced consideration of absorption capacity, regeneration energy, 
solvent selectivity, thermal stability and viscosity. In order to obtain the 
thermodynamic properties of the solvents and the kinetics of their ab
sorption reactions, experimental discoveries and molecular simulations 
are commonly used in studies for solvent selection and design. Candi
date solvents include not only new solvents developed using quantita
tive structure-property relationship (QSPR) models, which predict 
solvent properties using molecular structure, but also mixed solvents 
composed of multiple solvents blended in different ratios. The large 
number of potential candidates presents a significant challenge for sol
vent selection and design in carbon capture (Struebing et al., 2013). In 
addition, the inherently time-consuming feature of experimental studies 
and molecular simulations limits the progress of solvent development, 
which delays the commercial deployment of optimal carbon capture for 
the petrochemical industry. In the face of this challenge, previous 
research has attempted to develop prediction models of molecular 
properties by computer-aided molecular design (CAMD) (Zhou et al., 
2020). Integrating computer-aided molecular design with process 
simulation holds great potential for identifying high-performance sol
vents. For instance, a recent solvent screening study identified DEA as a 
promising candidate, achieving a 46.7 % reduction in overall energy 
consumption for CO₂ capture compared to the benchmark solvent MEA. 
However, traditional QSPR and CAMD approaches are limited by reli
ance on manually selected molecular descriptors, low capabiliity to 
capture complex non-linear structure-property relationships, and poor 
generalizability due to small datasets. With the emergence of the AI era, 
NLP-based approach offers a promising solution by data extraction from 
literature. In addition, emerging machine learning approach can learn 
directly from DFT without relying on predefined descriptors, thereby 
enhancing both the predictive accuracy and physical interpretability of 
molecular property models.

Artificial neural networks, genetic algorithms, Bayesian optimiza
tion, and random forests have been used in the past to find new 

Fig. 1. Four different AI-driven directions for CCUS development in the petrochemical industry from micro to macro perspectives.
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structures for amine-based solvents (Hosseinpour et al., 2023). Recent 
advances in AI have generated two promising methods for accelerating 
access to experimental data and molecular simulations (refer to Fig. 2). 
The first method involves the integration of NLP to develop a molecular 
property database. For example, the open-source software Chem
DataExtractor originated from the Cavendish Laboratory at the Univer
sity of Cambridge (Swain and Cole, 2016) is widely used in the world, 
along with the commercial software SciFinder and the open-source 
software ChemSpot. ChemDataExtractor is created as an AI tool employ
ing NLP to extract experimental data (i.e. thermodynamics properties 
and kinetic parameters) about specific chemicals from published liter
ature. The second method is to use deep learning to predict potential 
energy surface to make molecular simulations faster. This method was 
initially introduced by Han et al. (2018) and was subsequently improved 
to develop DeepMD-kit—an open-source machine learning tool which 
trains deep neural networks using density-functional theory (DFT) data 
to perform molecular dynamics simulation (Wang et al., 2018). Building 
on this foundation, DP-GEN automates Deep Potential model develop
ment using an iterative framework, combining configuration space 
exploration based on large-scale atomic/molecular massively parallel 
simulator (LAMMPS), performs DFT calculation based on Vienna Ab 
initio simulation package (VASP), and DeePMD-kit training to optimize 
data representativeness and model accuracy (Zhang et al., 2020).

ChemdataExtractor has been used with large language model (LLM) 
to implement the collection of experimental metal-organic framework 
(MOF) data to generate a comprehensive and ready-to-use dataset. 
Specifically, ChemdataExtractor was used to extract texts from over 
40,000 journal articles related to MOFs and processed into structured 
data to feed LLM. This step was crucial for maintaining high data quality 
and enabling accurate extraction of MOF synthesis conditions and 
chemical properties (Kang et al., 2025).

DP-GEN has been applied to develop a model to predict the proper
ties of pure copper covering wide temperature (50–2715 K) and pressure 
ranges (1–50,000 bar) (Zhang et al., 2020). Compared with conven
tional DFT calculations, the trained Deep Potential model predicts the 
potential energy surface with <2 % relative error, and accelerates 
computational efficiency by about 3600 times. The model significantly 
reduces the computational time required for molecular simulations, thus 
improving efficiency.

Both methods are expected to be applied to the solvent selection and 
design for carbon capture. Using ChemDataExtractor tool (Swain and 
Cole, 2016), the properties of candidate solvents documented in the 
existing literature can be rapidly accessed. Meanwhile, using DP-GEN 
(Zhang et al., 2020) could accelerate the molecular simulation, and the 
prediction model for candidate solvents properties can reduce compu
tational demand by thousands of times compared to DFT simulations in 
the foreseeable future. These two tools are open-source. Both Deep
MD-kit (https://github.com/deepmodeling/deepmd-kit) and 

ChemDataExtractor (https://github.com/CambridgeMolecularEnginee 
ring/chemdataextractor2) provide example datasets and benchmark 
cases for model training and validation. Both methods are time-efficient 
and significantly accelerate the solvent selection and design process. 
Subsequent studies could link solvent properties with the carbon capture 
process to select and design solvents to obtain solvents with the lowest 
energy consumption for carbon capture process (Lee et al., 2023a). So 
far, AI-assisted solvent selection and design remains at the 
proof-of-concept stage, with no real-life application examples. Signifi
cant challenges remain, such as accurately modelling the relationship 
between molecular properties and process performance. Recent studies 
have begun to address this gap by developing predictive models for 
carbon capture processes that are applicable to a large number of amine 
solvents (Lee et al., 2023b). In addition, while NLP tools can provide 
large-scale data extraction, the inconsistency of various chemical 
reporting standards remains a major challenge. Manual intervention for 
post-processing is still required to ensure the reliability of the extracted 
datasets.

2.2. Catalyst design for CO2 utilisation

The field of catalysis is undergoing a paradigm shift, ushering in an 
era where catalyst design is central. The essence of catalyst design is 
constructing active sites and giving the active site a specific environment 
to precisely control activity, selectivity and stability. Catalysis is now 
evolving towards unprecedented precision, as the scale of the catalyst 
active phase has transitioned from nanoscale and sub-nanoscale di
mensions to the single atom dimension. The concept of single-atom 
catalysts (SACs) was first proposed by Qiao et al. (2011), who 
employed a co-precipitation method to produce platinum SACs for 
carbon monoxide oxidation. Currently, SACs have emerged as a frontier 
in catalysis due to their maximum atom utilization and unique struc
tures. With the rapid progress in controllable synthesis strategies, SACs 
have been successfully applied across a wide range of fields, including 
toxic gas handling, fuel cell and CO2 utilisation (Chen et al., 2018).

The petrochemical industry emits substantial amounts of CO₂. Con
verting the CO₂ into fuels and chemicals to establish an artificial carbon 
cycle is important for achieving decarbonization of the petrochemical 
industry. However, CO2 utilization process requires the design of effi
cient and selective catalysts with low energy consumption and low cost, 
which has always been a great challenge (Leonzio and Shah, 2024). Due 
to the unique physical-chemical properties and abundant adjustable 
coordination environments, SACs often exhibit superior performance 
beyond conventional nanocatalysts in CO2 utilization. For example, 
Co-based catalysts for Fischer-Tropsch synthesis (FTS) often suffer from 
methane overproduction and deactivation due to water-induced oxida
tion. By stabilizing hexagonal close-packed (HCP) phase of Co nano
particles, Ir-Co catalyst (a kind of SAC) significantly suppresses methane 

Fig. 2. AI application in solvent selection and design for carbon capture (Swain and Cole, 2016; Zhang et al., 2020; Sha et al., 2025).
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selectivity—from 10 % with Co catalyst to 2.7 %—and simultaneously 
enhances durability, maintaining stability to over 1200 hours (better 
than 200 hours with Co catalyst) (Zhou et al., 2019). In the electro
chemical CO₂ reduction reaction (CO₂RR), the high overpotential 
required to activate the stable C = O bond, coupled with the presence of 
multiple competing reaction pathways, often results in low conversion 
efficiency and poor product selectivity. With their maximized atomic 
utilization efficiency and adjustable coordination environments, SACs 
exhibit enhanced catalytic activity. Furthermore, the uniform structure 
of SACs’ active sites ensures consistent interactions with substrates, 
which is beneficial for improving selectivity. Efficient CO2RR processes 
can be realized using Ni-based SACs (nearly 100 % Faradaic efficiency 
for CO production) (Chen et al., 2018).

The rational design of SACs remains challenging. Identifying optimal 
metal-support combinations for catalyst active phase and coordination 
environments generates thousands of choices. Traditional trial-and- 
error approaches are limited by the vast combinatorial space of metal- 
support combinations and coordination configurations. ML models can 
predict metal coordination numbers, ligand types, and bond distances/ 
angles by learning from extensive DFT databases so as to rapid identi
fication of optimal geometries. In addition, AI accelerates the screening 
of thousands of potential active site configurations. By combining large 
DFT datasets with ML algorithms, structure-performance relationships 
of catalysts can be obtained, which is critical for catalyst design (Xin, 
2022). Particularly in CO2 utilization, the application of AI advances the 
discovery of catalyst materials (Mazheika et al., 2022). For example, Cu 
is the dominant electrocatalyst when it is desired to reduce carbon di
oxide to ethylene. However, hundreds of copper-containing metal 
crystals have more than thousands of coordination environments. It is 
obviously not feasible in terms of time cost to perform DFT simulations 
for all the possible situations to find the most catalytically active ones. 
Using DFT simulation results as training data, researchers (Zhong et al., 
2020) screened the copper-aluminium alloy using ML regression method 
and successfully obtained an electrocatalyst with the Faraday efficiency 
over 80 % compared to 66 % with pure Cu catalyst. In addition to its 
high selectivity, the AI-designed catalyst demonstrated a power con
version efficiency (PCE) of 55 ± 2 % at 150 mA/cm², significantly 
outperforming conventional Cu-based catalysts (around 35 %). More
over, volcano plot analysis showed that the AI-designed catalyst 
approached the optimal CO adsorption energies (ΔECO) value (~–0.67 
eV), indicating a high turnover frequency (TOF). In contrast, the pure 
copper catalyst exhibits a ΔECO that deviates significantly from the 
optimal value, resulting in lower intrinsic performance. Zhong et al. 
(2020) studied 244 different copper-containing intermetallic com
pounds, from which 12,229 surface configurations were systematically 
enumerated and 228,969 potential adsorption sites were identified. To 
establish a robust AI predictive model, Zhong et al. (2020) conducted 
systematic DFT simulations across 4000 carefully selected active sites, 
calculating CO adsorption energies to serve as high-quality training 

data. A similar approach has been used to design single-atom alloy (SAA, 
a kind of SAC) catalysts for hydrogen production from methane 
cracking. Conventional catalysts are prone to deactivation due to carbon 
deposition, Sun et al. (2024) used DFT-calculated C–H dissociation 
energy barriers for SAA catalyst surface structures as the training data. A 
ML model was used to predict and screen the optimal catalysts from over 
10,000 SAA catalysts surface structures, and the final screened Ir/Ni 
surface achieved a methane conversion of 13.87 % at 450 ◦C and 1 atm, 
which is much higher than that of the pure Ni catalyst of 3.7 %.

CO2 utilization involves various catalysis methods (e.g. thermal 
catalysis, electrocatalysis and photocatalysis) and generates different 
products such as ethylene, methane and syngas (Kamkeng et al., 2021). 
Designing catalysts with excellent performance has been a challenge for 
CO2 utilization processes (Gao et al., 2017). Currently only the elec
trocatalytic reduction process for the production of CO and formic acid 
has the potential for levelized costs below current market prices 
(Leonzio et al., 2024), which is hardly enough to drive the large-scale 
deployment of CCUS. The role of SACs in CO2 utilisation is promising 
(Yu et al., 2023), especially when atomic-scale insights of the SACs are 
combined with the predictive power of AI to accelerate catalyst design 
(Mok et al., 2023). As shown in Fig. 3, SCA can coupled with ML to guide 
the design of catalysts for CO2 reduction in to chemical and fuels. 
However, current progress remains hindered by several critical limita
tions. Data constraints represent a primary bottleneck, as reliable AI 
models require training on datasets generated from thousands of DFT 
calculations, constituting an enormous computational demand. 
Furthermore, critical questions remain regarding whether training 
datasets encompass appropriate chemical spaces, data quality, and the 
inherent gap between DFT predictions and experimental data. In addi
tion, the transferability of AI models across different catalytic systems 
remains unresolved, while the limited interpretability of AI-derived 
models poses additional challenges that strongly depend on how phys
ical information is included.

2.3. Hybrid modelling for process optimisation

Process modelling and optimization are widely used in petrochem
ical industry. In terms of modelling, as processes become increasingly 
nonlinear and multi-scale, the computational demand of first-principles 
modelling \ simulation continues to increase (Rajulapati et al., 2022). At 
the same time, the rise of AI advances the development of data-driven 
modelling that can leverage large datasets to capture complex process 
behaviour. Hybrid modelling, which combines the advantages of 
first-principle modelling and data-driven modelling, ensures accurate 
and efficient model predictions in increasingly complex petrochemical 
processes, and provides the foundation for optimal design and operation 
(Sharma and Liu, 2022). In terms of optimisation, a variety of AI-based 
algorithms have been proposed to enhance the efficiency and effec
tiveness of process optimization tasks.

Fig. 3. AI application in catalyst design for CO2 utilisation (Chen et al., 2018; Zhong et al., 2020).
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There are many cases of hybrid modelling for CCUS. For instance, 
Sha et al. (2025) employed a physically informed neural network (PINN) 
to combine experimental data with fundamental physical laws to cap
ture the nonlinear dynamics of a carbon capture system. PINN models 
can effectively capture complex nonlinear process dynamics to cope 
with variations of the inputs such as lean solvent flowrate, re-boiler 
steam flowrate, and flue gas flowrate. In contrast, conventional 
reduced order models based on principal component analysis (PCA), 
which typically rely on linear projections, are difficult to use for carbon 
capture systems.

Moreover, design and operation optimization based on AI technol
ogy has been applied in the field of decarbonization of industrial pro
cesses with CCUS (Zhang et al., 2025). Researchers (Xi et al., 2021) 
designed a steel mill gas utilization system integrated with CCUS and 
renewable energy based on a hybrid modelling approach. The system 
uses particle swarm optimization (PSO) algorithm for multi-objective 
optimization. To deal with weather and load changes, the carbon cap
ture level and the methanol production rate were flexibly operated, and 
finally achieved a 62 % reduction in overall system CO2 emissions.

Recently, with the release of ChatGPT and DeepSeek, the perfor
mance of LLM has advanced and is promising for industrial process 
modelling and optimisation (Javaid et al., 2023). LLM can assist engi
neers in selecting appropriate hybrid modelling methods as well as 
optimization strategies. Researchers (Rios et al., 2024) demonstrated 
how to use LLM to analyse industrial processes cooperating with human 
users. They used realistic engineering data to interact with ChatGPT-4o 
to assist the surrogate model selection and process optimisation. 
LLM-assisted surrogate modelling and optimisation was successfully 
applied to gear train optimization and pressure vessel design, with per
formance differences in optimization results of <1 % compared to fully 
manually constructed surrogate models as well as optimisation (Rios 
et al., 2024).

The AI methods, ML and LLM, shown on the left side of Fig. 4, can be 
applied to both modelling and optimization. For modelling, we provided 
an example of carbon capture process modelling. For optimization, we 
use the example of optimal decarbonization of a steel mill gas utilization 
system. Even though hybrid process modelling has the potential to 
significantly advance the development of petrochemical industry 
decarbonisation, to the best of our knowledge, its application in pilot- 
scale facilities or industrial digital twins has not yet been documented 
in the literature. One major limitation is the scarcity of experimental 
data as operating CCUS pilot plant is both time-consuming and expen
sive. The limited datasets hinder the development of high-fidelity digital 

twins and highlight the need for methods that can effectively learn from 
small datasets. LLM is promising but still facing technical shortcomings 
such as data not effectively standardized. In addition, while LLM have 
shown great potential in aiding process modelling and optimization, 
they are still a distance away from being directly applied in industrial 
CCUS processes. Current limitations include the need for manual prompt 
design, the lack of deterministic reproducibility due to inherent 
randomness, and the limited integration with industrial modelling tools 
via APIs, indicating that the use of LLMs for modelling and optimization 
remains at an early stage. Future research should focus on improving 
small-data learning technologies to fully exploit the potential of “AI for 
modelling” in CCUS applications. Existing strategies to address data 
scarcity include the use of ML methods suited for small datasets and data 
augmentation using generative models. PINN can effectively incorpo
rate domain knowledge into the learning process, enabling accurate 
predictions even with limited training data. Structured data augmenta
tion can be effectively implemented using generative models such as 
Generative Adversarial Networks (GAN) and Variant Autoencoders 
(VAE). They carefully preprocess the data and thoroughly assess the 
quality of the synthesized data.

2.4. AI for LCA and sustainability analysis

In order to deploy CCUS in the petrochemical industry, a compre
hensive assessment of the technology is required (Terlouw et al., 2021). 
LCA is a standardized methodology for evaluating environmental im
pacts across a product’s lifecycle. Recently it has evolved into life cycle 
sustainability assessment (LCSA) to encompass social and economic 
dimensions alongside environmental metrics. LCSA, proposed by Guinée 
et al. (2011), extends the scope of the traditional LCA by covering the 
three pillars of sustainability: people, planet and prosperity. However, 
LCSA faces significant challenges due to the complexity of integrating 
environmental, social and economic data, often leading to fragmented 
analyses.

AI facilitates the integration of LLM into LCSA, enhancing data 
processing and analysis capabilities. AI-assisted LCSA has already 
proven successful. For instance, the Tiangong Project serves as a general 
demonstration of how LLMs can automate data extraction and harmo
nization for LCA (Al-Sakkari et al., 2024; Xu, 2023). Although the 
software tools developed from the Tiangong Project have not yet been 
applied to CCUS in the petrochemical industry, they could be easily 
adapted for use in this sector. In the framework of integrating LLM into 
LCSA, LLMs can process unstructured text from diverse sources 

Fig. 4. Hybrid modelling for process optimisation (Liu et al., 2022; Rios et al., 2024; Sha et al., 2025; Chiang et al., 2022).

J. Ma et al.                                                                                                                                                                                                                                       Carbon Capture Science & Technology 16 (2025) 100471 

5 



(including data sheets, academic publications and regulatory reports) to 
identify potential life cycle inventory (LCI) data points (Preuss et al., 
2024). These data are then validated manually before being entered into 
an LCI database. This hybrid approach not only accelerates data pro
cessing but also enhances accuracy by reducing manual errors. Despite 
these advances, some open research questions remain. One major gap is 
the lack of domain-specific LLM trained on high-quality sustainability 
datasets, which limits the accuracy of the developed LLM.

The application of AI to LCSA holds great potential for enhancing 
sustainability analysis in the petrochemical industry. However, aligning 
AI outputs with International Organisation for Standardisation (ISO) 
standards and ensuring data transparency remain critical challenges. 
Future research should focus on developing specialized LLMs trained on 
collated datasets to ensure the reliability and accuracy of the sustain
ability assessment. By embedding AI into LCSA (refer to Fig. 5), we can 
address the environmental, social and economic aspects of sustainability 
in the petrochemical industry, guiding more informed decision-making 
in CO2 emission reduction efforts.

3. Conclusion

In this paper, we analysed the challenges faced by petrochemical 
industry and the role of CCUS in petrochemical industry for decarbon
isation. We also explored the opportunities provided by AI for petro
chemical industry to reduce CO2 emission. To support the solvent 
selection and design for effective carbon capture, we introduce two AI- 
driven methods using ChemDataExtractor (AI as a data mining tool) and 
DP-GEN (AI as a simulation assistant) respectively. Following that, we 
presented an overview of SACs and their promising potential in CO2 
utilisation and also discussed how AI addresses key challenges in cata
lyst design for CO2 utilisation. Subsequently, we introduced the role of 
hybrid process modelling in petrochemical industry for decarbonisation 
and provided insights on LLM-assisted surrogate modelling and opti
misation. In the end, we used the Tiangong project as an example to 
demonstrate the potential of LLM for LCSA. Among these four directions, 
hybrid modelling appears to be most promising for near-term industrial 
applications due to its relative maturity and extensive academic vali
dation. However, all directions face ongoing challenges. Technically, 
solvent selection and design, and catalyst design remain at the proof-of- 
concept stage, with no widespread real-world applications. Hybrid 
modelling faces data scarcity and fragmentation. In LCSA, the absence of 
domain-specific LLMs trained on high-quality data limits accuracy and 
practical value. Economically, access to high-quality industrial data 
remains costly and restricted. From a regulatory standpoint, there is 
currently no standardized framework for LCSA tailored specifically to 
CCUS applications. Continued efforts are needed to establish consistent 
evaluation methodologies and support future industrial deployment. 

Through harnessing AI technologies, the petrochemical industry can 
accelerate its transition to a sustainable low-carbon future.
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